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This paper presents theory and experimental data on the resonance frequency of systems consisting
of different-sized air bubbles attached to a rigid wall. Effects of the change in resonant frequency
with bubble size and distance between the bubbles were studied. It was found that the symmetric
mode resonance frequency of the bubble system decreased with increasing r=R,/Ry;, where R,
and Ry, are the equilibrium radii of bubbles in the system. Both the symmetric and antisymmetric
modes of oscillation were detected in the experiments, with the resonant frequency of the symmetric
mode dominant at small bubble separation and the frequency of the antisymmetric mode dominant
when the bubbles were farther apart. A linear coupled-oscillator theoretical model was used to
describe the oscillations of the bubble system, in which the method of images was used to
approximate the effects of the wall. It was found that there was fair to good agreement between the

predictions of the coupled-oscillator model with the experimental data.
© 2009 Acoustical Society of America. [DOI: 10.1121/1.3257581]
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I. INTRODUCTION

The expansion and compression of gas bubbles within a
liquid medium was first studied theoretically by Lord
Rayleigh1 in 1917. The mathematical model originally con-
sidered by Rayleigh has been modified over the years by
many researchers.”™® One such model is the nonlinear
Rayleigh—Plesset equation which like Rayleigh’s original
derivation assumes that the bubbles remain spherical. It has
been well-known that the nonlinear dynamics of the
Rayleigh—Plesset equation is only relevant for small (micron
sized) bubbles. Large (millimeter sized) bubbles typically
undergo very small oscillations, thus experiencing simpler
dynamics governed by a linear second order ordinary differ-
ential equations, derived by linearizing the Rayleigh—Plesset
equation. The natural frequency of this linearized model is
commonly used to estimate the resonant frequency of an
isolated bubble oscillating in response to acoustic excitation.
This frequency, commonly known as the Minnaert’s fre-
quency, was also independently derived by Minnaert.”

The early studies mentioned above only considered
cases where the bubbles were assumed to exist in isolation.
More recently, systems consisting of many interacting
bubbles have been studied by various investigators.ﬁ_15 A
short review of some recent studies can be found in the ar-
ticle by Manasseh and 00i.'® As one might expect, bubbles
can interact acoustically with each other, causing the natural
frequencies of the system to change from that of isolated
bubbles, and it was found that the interaction has a greater
effect when the bubbles are closer. (These modifications to
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the system frequencies are linear effects; it had been known
for some time that nonlinearities can cause interacting
bubbles to move, a phenomenon called the secondary
Bjerknes effect, e.g., Ref. 17.) In order to model the linear
interaction, Feuillade® used the coupled oscillator approach
by modeling the system as a coupled set of ordinary differ-
ential equations, using the self-consistent formulation intro-
duced by Tolstoy7 and showed that the predicted data agree
well with available experimental data. In the same article,
Feuillade conducted mathematical analyses of two and three
bubble systems and showed that there are various natural
oscillating modes of the bubbles such as symmetric, or “+,”
(where all bubbles oscillate in phase) and antisymmetric, or
“—.” (where all bubbles oscillate 180° out of phase) modes.
If the bubble system oscillates in the — mode, a phenomena
known as super-resonances can occur. In this state, the over-
all damping of the bubble system is small and the bubbles
can undergo very large oscillations (see Ref. 18 for more
detailed explanation of this phenomena).

The studies mentioned above investigated the behavior
of a bubble or a group of bubbles in an infinite domain.
However, in many practical applications, including novel
biomedical applications (see Ref. 16 for references), bubbles
are likely to be close to or attached to a wall or boundary.
The presence of a wall would undoubtedly influence the os-
cillatory dynamics of the bubbles. Thus, there have been
some studies investigating the influence of the wall on
bubble oscillations (see review article by Blake and Gibson"
and references therein) where the bubbles undergo a change
in shape under large pressure fluctuations. For small pressure
fluctuations, the main effect of the solid boundary is to
change the natural frequencies of the collective bubble sys-
tem. Recent experimental studies by Payne et al. 2 have mea-
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sured the resonant frequency of identical bubbles attached to
a rigid boundary. In the same study, Payne et al.” proposed
to use an image-bubble concept, formulated as a coupled-
oscillator problem, to model the behavior of a group of
bubbles close to a wall. This approach was originally intro-
duced by Strasberg21 where he showed that a bubble oscil-
lating close to a rigid boundary can be modeled by introduc-
ing a mirror-image bubble oscillating in phase with the
original bubble. Thus, the net effect of the mirror-image
bubble (and hence the wall) was to reduce the resonance
frequency of the bubble. Payne et al.”® showed that the
mirror-image bubble approach can also be successfully ex-
tended to model the behavior of a group of bubbles close to
a wall; predictions showed good agreement with the experi-
mental data.

All the experimental studies conducted thus far have
been for systems consisting of bubbles that are of the same
size. For this type of system, it has been shown that the
coupled-oscillator model predicts resonant frequencies that
are in good agreement with experimental results. In the
present work, an experimental and theoretical investigation
was carried out to investigate the behavior of resonant fre-
quencies for a system consisting of two or three different-
sized bubbles on a rigid boundary. The theoretical model
considered by Payne et al.® was extended to explain the
experimental data of different-sized bubbles on a rigid
boundary.

Il. THEORETICAL DEVELOPMENT

It is commonly accepted that oscillations of large (mil-
limeter sized) bubbles is governed by the following set of
linear, second order ordinary differential equations

N 2

. . R:. ..
(1) + €6,(1) + wy8(1) = = 2 —=8,(1) (1)
i#j R,dj;

(see Ref. 22 and references therein) where &,(f)=R,(1)-R,;,
R(1) is the radius of bubble i as a function of time, R,, is the
equilibrium radius of bubble i, and

o= -5 @

PRy,
are the damping coefficients. Note that, in general, the damp-
ing is quite small and the mathematical expression for ¢;
should include the radiation, thermal, and viscous damping.
These expressions can get quite lengthy (see published
works by Devin® and Eller®"). In order to simplify the analy-
sis, we follow the work of Ida'® and use Eq. (2) as an ap-
proximation for the damping. The natural frequency of a
bubble in isolation, w,;, is given by
2 _37P,

w. .=
ol 2 0
pRoi

(3)

where p is the density of the liquid, 7y is the specific heat
ratio, and P, is the equilibrium pressure. Equation (1) can be
written in matrix form as
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FIG. 1. Bubbles of different size close to a wall.

MXx + Cx + Kx = — Sk, (4)

where x is a time-dependent vector of all the &,(r), M is the
inertia matrix, C is the damping matrix, K is the stiffness
matrix, and S contains all the coupling terms of the bubble
system. Equation (4) can be solved by assuming a solution of
the form x=Ae which gives

N2 (M +S)+AC+KJA=0. (35)

In order to obtain a nontrivial solution for the right eigenvec-
tors A,

det{]A\’(M +S) + \C + K] =0; (6)

thus there are only distinct values of N (eigenvalues) and
associated A that can be solutions to Eq. (5). This is a qua-
dratic eigenvalue problem and can be found to occur in many
practical applications (see Ref. 25 for more examples). Equa-
tion (6) is a polynomial of order 2n, where n is the matrix
dimension or the number of bubbles in the system. Since all
coefficients of the characteristic polynomial [Eq. (6)] are real
numbers, the roots (eigenvalues) of Eq. (6) occur in n com-
plex conjugate pairs. The natural frequencies of the system is
given by the imaginary part of A and the real part of \ (typi-
cally a negative constant) indicates the damping associated
with the natural frequencies.

In general, closed form expressions for the eigenvalues
and eigenvectors cannot be obtained. Numerical methods
need to be employed to acquire the eigenvalues and eigen-
vectors and hence compute the solution to Eq. (4). However,
insight into the solution can be obtained by examining the
closed form expression for the eigenvalues of a simpler sys-
tems consisting of only two and three bubbles. First, consider
the case where the system is made up of two bubbles with
different equilibrium radii, R;, and the effects of the walls
are modeled by the method of images (see Fig. 1). For such
a system, Eq. (5) can be written explicitly as
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where d,, is the distance between the two real bubbles and
the other d;; are the distances between the bubbles and their
images. Following the discussion above, a nontrivial solution
can be only obtained if

R R; R;
)\2<1 + d_m) + € + W), )\2<i + i)

13 Ryidis  Rydyp
o R? R? R
7\2(¢+L> x2(1+ﬂ>+>\ez+w§2
Ropdri Rppdas dyy
=0. (8)

Equation (8) is the characteristic polynomial for a system of
two unequally sized bubble with images used to model the
effects of the wall.

The analytical expression for roots of the polynomial
specified by Eq. (8) above can get unwieldy and does not
provide useful information. A further simplification can be
made if we assume that the two bubbles are of the same size,
i.e., Ryj=Rpn =R, and thus wy;=wg,=w,. We will also ignore
damping by setting ¢; (for millimeter sized bubbles, the
damping is usually very small) and assume that the size of
the bubbles, R, is small relative to the distance between the
bubbles, hence dj,~d;,~d (see Fig. 1). Making these as-
sumptions, Eq. (8) simplifies to

3 R
)\2<—) + g 7@(2—0)
2 d

det =0. )
R 3

x2<2—°> xz(—> +

d

The eigenvalues corresponding to Eq. (9), \, can be found to

be
202 202
i\/¢ and t\/¢, (10)
—3—4/(dIRy) —3+4/(dIRy)

with associated eigenvectors given by

BRI

The first eigenvector has a lower natural frequency and it
represent a regime where the two bubbles oscillate in phase
relative to each other. This is the + (symmetric) mode. The
second eigenvector is the — (antisymmetric) mode because it
represents the state where the two bubbles oscillate 180° out
of phase with each other phase with each other. The + mode
of a two bubble system always has a lower frequency than
the — mode of a two bubble system. The reason for this was
explained by Feuillade.”* When bubbles oscillate in phase
with each other, they expand and contract simultaneously.
Because the liquid in between the bubbles is assumed to be
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FIG. 2. Natural frequencies of the “—" mode for a two and three bubble
system (—), natural frequencies for the “+” mode of a two bubble system
(——), and natural frequency for the “+” mode of a three bubble system (---).

incompressible, the motion of the bubbles is retarded and
leads to a reduction in natural frequency. The opposite is true
for the — mode leading to a higher natural frequency. Note
that in the limit where d — oe, the natural frequencies of the
system approach

2
\/;a)o ~ 0.8165a,, (12)

which is the natural frequency of a single bubble attached to
a wall. A plot of the natural frequencies of the system is
shown in Fig. 2 which is similar to Fig. 3 of Feuillade® who
studied the oscillations of bubbles in free space. The only
difference here is that the asymptotic value of the natural
frequencies is approximately 0.8165wy (as oppose to just w,)
which is the result of adding image bubbles in the system to
model effects of the wall.

A similar analysis can be carried out for a system con-
sisting of three bubbles arranged on the vertices of an equi-
lateral triangle of length d attached to a wall. Again, the
method of images will be used to model the effects of the
wall and all bubbles will be assumed to be of equal size. The
natural frequencies for such a system can be shown to be
given by the following expressions:

N - / ZwS . / 2w(2)
T N =-3-8/(dRy))’ ~— NV-=3+4/(d/R)’
. / Zw%
T N =34+4/(dIRy)’

Note that one of the eigenvalues is repeated. The correspond-
ing eigenvectors are

1 -1 -1
1t, 1 ¢ 50 ¢ (13)
1 0 1

The first eigenvector is the + (symmetric) mode because it
represents the state where all three bubbles oscillate in phase.
The other two eigenvectors have the same natural frequen-
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FIG. 3. Natural frequencies of a two bubble system close to a wall for
different values of Ry,/R,;. — Natural frequencies of the “—” mode, ——
Natural frequencies for the “+” mode.

cies and they represent a regime where two bubbles oscillate
180° out of phase with each other, while the third bubble
remains in equilibrium (the — mode). Figure 2 also shows a
plot of the natural frequencies of a three bubble system. The
natural frequency associated with the — mode is the same as
for the two bubble system. The frequency associated with the
+ mode is lower for the three bubble system than for the two
bubble system.

The analysis above was formulated for bubbles that are
of the same size. For a system consisting of bubbles that are
of different sizes, the closed form solution can be unwieldy
and not very informative. To study the effects of different
bubble sizes, the eigenvalues for a two bubble system is
obtained numerically by solving Eq. (8). Similar to the
analysis carried out above, we will again assume that damp-
ing can be neglected and that the spacing between the
bubbles are large compared to the size of the bubbles d,
~d,=d. Computations were carried out with reference
bubble size, Ry;=2.29 mm and Ry/Ry;=1.00,1.29,2.00.
These bubble sizes were chosen because they are similar to
the bubble size used in our experimental setup (see Sec. IIT).
The resulting eigenvalues obtained are shown in Fig. 3 . The
modes of oscillations can again be classified as either a sym-
metric (or +) mode where both bubbles oscillate in phase
and antisymmetric (or —) mode where both bubbles oscillate
180° out of phase. As expected, and consistent with the rea-
sons given by Feuillade® for the case with similar size
bubbles, the frequency of the + mode is always less than the
frequency of the — mode. From Fig. 3, it can be concluded
that the — mode is affected by R,/ R(; only for small values
of d/Ry;. For d/Ry; >3, there is very little variation in the
natural frequency associated with the — mode. On the other
hand, the + mode appears to be sensitive to the value of
R/ Ry The natural frequency associated with the + mode
appears to monotonically decrease with Ry,/R; for all val-
ues of d/Ry;.

In the experiments, the bubble system was excited with
an external source. So, strictly speaking, we will be measur-
ing the resonance frequency of the bubble system. In systems
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where the damping is small, the resonance frequency is very
similar to the natural frequency of the system. To investigate
the behavior of system eigenmodal response to external ex-
citation, we will take a closer look at the particular solution,
6,(t), of a two bubble system close to a wall [Eq. (7)] excited
by a time harmonic force (f)=q.ye' . Following Tisseur
and Meerbelrgen,25 ,(t) can be written as

2n B*q
8y(1) = e X —I=2 A

J
j=1 [Wex— N\

(14)

where A, B, and \ are right, left eigenvectors, and eigenval-
ues of the quadratic eigenvalue problem shown in Eq. (5).
The contribution of the particular mode A; to the particular
solution is dependent on the jth coefficient

B*!' Qext

[ Wy — )\j

b= (15)

Thus ¢ is a measure of the contribution of the + or the —
mode to the particular solution. It is clear that ¢; increases if
we force the system at a frequency close to the eigenvalues
associated with A ;. A resonance condition in the system will
occur if the frequency of the external excitation is very close
to the natural frequencies (provided damping is small).

To study the effects of the external frequency excitation,
the amplitude of the various modes, ¢, is plotted as a func-
tion of excitation frequency. From Eq. (15) the peak of ¢ is
expected to occur when the system is excited at the fre-
quency similar to the natural frequency of the mode. If the
same pressure amplitude were applied to both bubbles, then
the response would only be made up by the + mode. How-
ever, if the pressure amplitudes applied to both both bubbles
were different, then it could be expected that §,(7) is made
up of both the + and — modes. In the following graphs,
results will be presented assuming that the external excita-
tion 1s

1
Aot = W{OA } (16)

These figures are selected because they are close to the am-
plitude of excitation that was applied to different bubbles in
the experimental setup. In our experimental setup, all
bubbles would experience different excitation amplitudes;
hence 8,(¢) will be made up of both the + and — modes. The
magnitude of ¢ for both the + and — modes are shown Fig.
4. The effects of separation distance on ¢ is shown in Fig.
4(a). ¢ for the — mode is shown by the solid line and ¢ for
the + mode is shown by the dashed line. As explained ear-
lier, the peak of ¢ for the — mode will always occur at a
frequency higher than the peak of ¢ for the + mode. It is
clear that as the two bubbles are moved further apart, the —
mode becomes the more dominant mode. The effects of
bubble size ratio Ry,/R,; on the amplitudes of the different
modes is illustrated in Fig. 4(b). It is clear that increasing the
size of the second bubble increases the amplitude of the +
mode while preserving the peak corresponding to the —
mode. Hence one can reasonably expect the + mode to be
more dominant for larger values of Ry,/Ry;.
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FIG. 4. Amplitude of “+” mode (—-) and amplitude of “—" mode (—) as a
function of excitation frequency w,,,. (a) illustrates the effects of varying
distance between the bubbles, d, which is indicated in the figure. Ry,
=2.29 mm and Rj,=2.88 mm. The effects of varying Ry, is shown in (b),
where d=10 mm and R(;=2.29 mm. The values of R\, is shown in the
figure.

lll. EXPERIMENTAL SETUP

The principal purpose of the experimental apparatus is
to transfer acoustic energy to the bubble system and to detect
the system’s response. The apparatus utilized is shown in
Fig. 5. The rig and postprocessing methodology is very simi-
lar to that used by Payne et al.”® The excitation signal is
generated by a computer and is passed into a stereo amplifier.
The amplified signal is then passed into the mechanical os-
cillatory unit which converts the electrical signal into oscil-
lations in the liquid where the bubbles exist. The response of
the bubble system is detected by a hydrophone and this sig-
nal is amplified by a charge amplifier unit. The bubble oscil-
lations are logged using a high speed data acquisition system
consisting of a data card, a data adapter, and a data logging
computer.

The chamber is made from 12 mm thick acrylic and has
a square base of length of 300 mm and height of 50 mm. A
30 mm diameter circular hole in the bottom of the cylinder
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FIG. 5. (Color online) Experimental apparatus.

allows the acoustic waves to propagate through the liquid
domain. To generate the mechanical oscillations, a common
audio speaker was adopted which is similar to that used by
Hsiao.” It was a 203.2 mm diameter, 8 ) speaker and was
modified by the attachment of an aluminum piston to its
diaphragm. The piston in turn drove a piece of duct tape that
sealed the hole in the chamber base.

The water in the tank was Melbourne tap water which
had been filtered prior to filling the tank. The bubbles were
introduced manually with a precision syringe (50 ul, Alltech
Associates Australia, with a volumetric accuracy of *=5%)
fitted with a needle, and were arranged as close as possible to
the centerline of the piston as possible (*0.25 mm). The
error in injected bubble volume corresponded to less than
1.7% of the bubble radii. Prior to this any small bubbles that
have been introduced by the process of filling the tank were
carefully removed by a combination of sweeping the plate
surface with a wire and suction using a syringe and tube.
Introduction of all the bubbles required generally took a few
minutes and where bubble sizes were varied; this was done
by injection of additional air. When a bubble was moved to a
new location, it was swept with a wire. It is well-known that
very small bubbles can increase their size over time, owing
to rectified diffusion:*’ even under very low-amplitude forc-
ing, bubbles with radii in the order of 100 um can increase
their radius by 50% after 1 h of continuous forcing.28 How-
ever, since the bubbles of the present experiment were
millimeter-sized bubbles (4000 times the volume of the just-
cited experiments) and forcing pressures were less than
107° bar, for rectified diffusion or dissolution effects were
negligible over the approximately 45-60 min required to
perform a complete set of measurements. Careful observa-
tion indicated the bubble size had not changed measurably
(to 0.1 mm) before and after the experiments. Sound am-
plitudes were kept well below those at which bubbles moved
or exhibited surface oscillations.

A chirp signal was used to drive the speaker; it had
constant amplitude and increased in frequency over time.

lllesinghe et al.: Resonant frequency of bubble system 2933
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FIG. 6. Frequency domain response for an input chirp signal. (a) Without
bubble response. (b) Response for a 50 ul bubble.

This signal was amplified before it was passed through to the
speaker. The length of the chirp signal was kept constant at
480 ms; its frequency varied from 100 to 2500 Hz, covering
the expected resonance of the bubble system in the tank.
Chirps were run in rapid succession, 540 ms apart.

Thirty time domain chirp responses were detected via
the hydrophone and were converted to the frequency domain
via a fast Fourier transform. As a reference, and in order to
determine the frequency response of the tank itself, data from
the hydrophone were initially obtained for cases when no
bubbles were present in the tank.”’ Typical frequency re-
sponse is shown in Fig. 6(a). Experiments were subsequently
carried out with bubble systems present in the tank. Typical
frequency response when there is a single 50 ul bubble
present in the tank is shown in Fig. 6(b). In order to obtain
the resonance frequency of the bubble system, the data in
Fig. 6(b) were scaled with the data in Fig. 6(a) and the reso-
nance frequency of the bubble system is identified as the
frequency when the scaled value is a maximum.

Experiments were conducted to detect pressure varia-
tions along the plate surface. The hydrophone was placed at
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FIG. 7. (Color online) Pressure distribution in the x-y direction of the tank.

the center of the acoustic source and directed away from the
source in two directions normal to each other along the plate.
As the pressure oscillations are cyclic, the rms value of the
pressure is calculated for a given chirp length of 0.18 ms,
with frequency varying from 800—1500 Hz. The rms pres-
sure is calculated using the Euclidean length of the set of
pressures given as

Nc[
1Pl = | 2 Pa()?. (17)
i=1

where the P, (i) is an element of the set of pressures which
changes with time and N, is the length of the set of pres-
sures. This Euclidean length is then converted to a rms value
by considering

1Pl
VN,

Prms: (18)

This rms pressure value represented as a voltage value is
shown in Fig. 7 for two orthogonal directions, considered in
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the experiment. The hydrophone was placed as close to the
plate as physically possible to detect the pressure oscillations
at the plate.

Figure 7(a) depicts the pressure distribution along the
axis denoted as x; the figure shows that pressure is highest
where the hydrophone is directly above the acoustic source.
As the distance from the acoustic source increases, the pres-
sure decreases accordingly. The wavelengths of sound in the
tank were at least 1 m, and the distance from the source to
the tank wall was 0.15 m. The disk creating the oscillation in
the tank was only 15 mm in radius, and therefore might be
considered a point source relative to the wavelength. The
sound field intensity falls off to 0.2 of its maximum value
over only 5% of a wavelength, not because of standing-wave
effects but simply because of the geometric spreading of the
sound wave from the small source. Figure 7(b) depicts the
pressure distribution along the axis denoted as y. Figures
7(b) and 7(a) are similar, yet differences between the plots
exist. Note that the variations in the pressure was calculated
for ten signals and the standard deviation is plotted which is
barely visible. It could be considered that random errors due
to signal generation and detection are insignificant.

In Secs. IV and V, when experimental data are compared
with theoretical predictions, we will assume that the reso-
nance frequency is similar to the natural frequency [obtained
by solving Eq. (6)]. In the bubble system analyzed in this
paper, the damping is usually very small. In general, it is
well-known that the resonance frequency is very close to the
natural frequency for a linear second order system with small
damping. Justification of this assumption for a bubble system
close to a wall can be found in Ref. 20.

IV. RESULTS AND DISCUSSION

As mentioned previously, this study will focus on the
comparison of image-bubble theory with experimental data
for a system consisting of bubbles of different sizes. As far as
the authors are aware, this type of data has not been acquired
before. Studies in the literature on equally sized bubbles (see
Refs. 8, 10, 29, and 20) show that the coupled-oscillator
model using image theory predicts resonant frequencies that
agree well with experimental data. Practical applications
usually consist of systems with bubbles that are of different
sizes. Thus, it is important to investigate and prove if this
agreement extends to data from a system made up of bubbles
that are of different sizes. In order to keep the number of
parameters manageable, only two and three bubble arrange-
ments will be considered. For the three bubble system, the
bubbles are arranged on the vertices of an equilateral tri-
angle.

Experiments were conducted for two different-sized
bubbles where the bubbles were positioned next to each
other with a separation distance of 12 mm. One 50 ul bubble
was left as the reference bubble next to a second bubble
which varied in size. The hydrophone was placed at the cen-
ter of the two bubbles to detect the oscillations of the two
bubble system. The size of the second bubble was incremen-
tally increased from 5 to 400 ul. At each increment the reso-
nance frequency of the bubble system was measured. The
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FIG. 8. (Color online) Resonance frequency vs ratio of bubble radius for
two different-sized bubbles where the reference bubble remains at 50 ul
(Rp1=R,=2.29 mm) and the other bubble incrementally increased size
from 5 to 400 ul. (---) Symmetric mode eigenvalues from Eq. (5) without
image bubbles, (—) with image bubbles. (O) The experimental results, with
error bars shown by vertical lines.

results obtained for this two bubble system are shown in Fig.
8. The error bars on the figure are smaller than the symbols,
showing that there was insignificant variation between the 30
chirps. The wavelength of acoustic pressure waves in the
chamber was large relative to the distance between the
bubbles. Hence, it could be assumed that the chirp signal
excited the symmetric mode (where all bubbles oscillate in
phase) of the system and the dominant frequency detected by
the hydrophone would be the + mode frequency, especially
if the bubbles were close. The theoretical + mode frequency
using image bubbles to approximate the effects of the wall
[i.e., the roots of Eq. (8)] is plotted against the ratio of the
bubble sizes, namely, the ratio between the size of the vol-
ume incremented bubble and the reference bubble [i.e.,
(R,j/Rre)*]. Note that for these set of results, R =Rp,
=2.29 mm. For comparison, the symmetric mode natural fre-
quency for a bubble system in an unbounded domain (i.e.,
without image bubbles) is also shown in this figure. It is
clear that the experimental data lie closer to the eigenvalues
given by Eq. (8), validating the use of image bubbles to
model wall effects.

Figure 8 shows that for small values of (R,;/Rp)’ <1,
the system response is dominated by the larger 50 ul bubble
on a wall. Using Egs. (3) and (12) the + mode natural fre-
quency of a 50 ul bubble on the wall is approximately
1163 Hz. This is very close to the resonance frequency mea-
sured by the hydrophone when (R,;/Re)* <1. As (R,;/ Ryef)?
increases, the resonance requency decreases, consistent with
the theoretical prediction shown in Fig. 3. When (R,;/ R’
>0, the experimental resonant frequency is larger than the
theoretical prediction made using the mirror image. The big-
ger (dominant) bubble in the system is no longer the refer-
ence 50 ul but the other bubble in the system, which could
be up to 400 wl in volume. This deviation from the experi-
mental data could be partially explained using the argument
presented by Strasberg.ﬂ When bubbles get bigger, buoy-
ancy and surface tension forces change the shape of the
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FIG. 9. (Color online) Resonance frequency vs ratio of bubble radius for
three different-sized bubbles with two reference bubbles remains at 50 ul
(Ry1=Rt=2.29 mm) and the other bubbles incrementally increases from
5 to 400 ul for each experi ments. (---) Symmetric mode eigenvalues from
Eq. (5) without image bubbles and (—) with image bubbles. (O) The ex-
perimental results, with error bars shown by vertical lines.

bubbles from a perfect sphere to an oblate spheroid. The
theoretical analysis carried out by Strasberg21 showed that
this change in shape can cause a slight increase in the reso-
nance frequency of bubbles in an unbounded domain. Even
though the bubbles here are close to a wall, we argue that
similar principles would apply. This slight increase in the
measured frequency is also consistent with the results pre-
sented in Ref. 20.

Similar to the two different-sized bubble case, experi-
ments were conducted for a system with three different-sized
bubbles. Two different cases are possible. The first case is
where a single bubble is incrementally increased in volume
with each experiment, leaving two other bubbles as reference
bubbles. In our experiments, the volume of the (two) refer-
ence bubbles were fixed at 50 ul, and the volume of the
incrementally growing bubble was varied from 5 to 400 ul.
The resonance frequencies measured by the experimental ap-
paratus is shown in Fig. 9. The second case is where two
bubbles incrementally increase in volume, leaving one
bubble as the reference bubble. In our experiments, the vol-
ume of the reference bubble was kept constant at 50 ul and
the size of the other two bubbles were varied from
5 to 350 wl. The results obtained are shown in Fig. 10. In
both these cases the bubble separation distance was kept con-
stant. Preliminary tests had showed that the positioning of
the hydrophone had little effect on the measured + mode
resonance frequency. Hence the hydrophone was placed
close to the reference bubble, to be consistent with all the
other experiments presented in this paper.

There are general similarities between data in Figs. 9
and 10. It is clear that there is a decrease in the symmetric
mode resonance frequency for increasing values of
(R,;! R..)°. The prediction using the mirror-image theory is
plotted in these figures and, for reference, the + mode natu-
ral frequency of three bubbles in an unbounded domain (i.e.,
no image bubbles) is also shown in Figs. 9 and 10. Similar to
the previous two bubble case, it is clear that the image theory
provides a better match with the experimental data. In Fig. 9

2936 J. Acoust. Soc. Am., Vol. 126, No. 6, December 2009

1400

1300

1200

1100

1000

900

Frequency (Hz)

800

700

600

500
0

(R2)

FIG. 10. (Color online) Resonance frequency vs ratio of bubble radius for
three different-sized bubbles with one reference bubble at 50 ul (Ry =R,
=2.29 mm) and the other two bubbles incrementally increase size from
5 to 350 ul with each experiment. (---) Eigenvalues from Eq. (5) without
image bubbles and (—) with image bubbles. (O) The experimental results,
with error bars shown by vertical lines.

and for (R,;/R,)?<1, the bigger (dominant) bubble in the
system are the two reference 50 ul bubbles. It can reason-
ably be expected that the two 50 ul bubbles will dominate
the response of the system for (R,;/ R..0)><1. Thus one can
simply ignore the third smaller bubble in the system and
predict the resonance frequency by using Eq. (10). This gives
the natural frequency of two 50 ul bubbles on a wall to be
1038 Hz, which is very close to the frequency measured ex-
perimentally for (R,;/R.)?<1 (see Fig. 9). When there is
only one reference bubble in the three bubble system, the
bigger (dominant) bubble in the system is the reference
50 ul when (R,;/R,)*<1. Figure 10 shows that for
(R,;! R.p)><1, the measured frequency is approximately
1150 Hz. This is very close to the value of the natural fre-
quency for a single 50 ul bubble attached to a wall which
has a natural frequency of 1163 Hz. Hence, the effects of the
two neighboring bubbles can be neglected provided that
(Ryj/ Ret)* < 1.

There are, however, several differences worth mention-
ing when comparing data in Figs. 9 and 10. For (R(,j/Rref)3
>3, it is clear that there is better agreement with theoretical
predictions in Fig. 9 than in Fig. 10. In Fig. 10, there are two
large bubbles in the system that are shaped like oblate sphe-
roids. Since Strasberg21 showed that the natural frequency of
the system is increased for bubbles shaped like oblate sphe-
roids, and since the measured frequencies are dominated by
the larger bubbles in the system, the two larger bubbles shift
the resonance frequency above the curve predicted by the
mirror-image theory. In Fig. 9 with (R,;/ R..p)>>3, only one
of the bubbles in the system was large (and shaped like an
oblate spheroid); thus there is better agreement with pre-
dicted data. This shows that as the number of large bubbles
increase, deviation from the theory developed here is more
prominent. This is to be expected because the theory assumes
that the bubbles are spherical, which is not the case when the
bubbles are large.
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FIG. 11. (Color online) Resonance frequency vs bubble separation distance
for two bubbles of 50 ul (Ry=R,=229 mm) and 100 ul (Ry,
=2.88 mm) (a) 150 ul (Ry,=3.30 mm) (b). (---) symmetric and (--) anti-
symmetric mode eigenvalues for the mathematical model without any image
bubbles. (—) symmetric and (—-) antisymmetric mode eigenvalues using
image bubbles to model the effects of the wall. (O) Experimental data, with
error bars shown by vertical lines.

In the next set of experiments, the effect of bubble sepa-
ration on the resonant frequency for a system of two
different-sized bubbles is investigated. Experiments were
conducted with two different-sized bubbles. The bubbles
were initially placed close to each other and then one of the
bubbles were gradually moved further away from the refer-
ence bubble. The first set of experiments were conducted
with a 50 ul bubble placed next to a 100 ul (r=Ry,/Ry,
~1.26) bubble with a separation distance of 8 mm. The
bubbles were then moved along the rigid boundary until the
bubble separation distance reached 80 mm. The results ob-
tained are shown in Fig. 11(a). To illustrate the effects of the
wall, theoretical predictions were computed for cases with
(to simulate wall effects) and without image bubbles in the
model. In general, it is clear that the predicted data obtained
using image bubbles tend to agree better with the experimen-
tal data. For small bubble separation, the dominant frequency
is the + mode frequency. As the bubbles are moved further
apart, the frequency response is dominated by the — mode. It
can be seen that the + mode frequency predicted by the
theoretical results deviate considerably from the experimen-
tal data. But as the distance between the bubbles increase, it
seems that the — mode begins to dominate and there is better
agreement with theoretical predictions. The occurrence of the
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FIG. 12. (Color online) Resonance frequency vs bubble separation distance
for two bubbles of 10 ul (Ry=R,s=1.34 mm) and 20 ul (Rj=1.68 mm).
(---) Symmetric and (---) antisymmetric mode eigenvalues for the math-
ematical model without any image bubbles. (—) Symmetric and (——) anti-
symmetric mode eigenvalues using image bubbles to model the effects of
the wall. (O) Experimental data, with error bars shown by vertical lines.

— mode is likely to be due to the fact that the applied sound
field was not perfectly uniform within the chamber. As
shown previously in Fig. 7, the pressure is high at the center
of the piston and decreases away from the piston center. As
shown in Fig. 11(a), the theoretically predicted — mode
shows closer agreement to the experimental data. The
changeover from + to — mode occurs as the distance be-
tween the bubbles reaches approximately 14 mm, and the —
mode appears to continue to dominate for bubble separation
distances beyond 14 mm.

From the theoretical analysis described in Sec. II, it was
conjectured that the — mode would be more difficult to ex-
cite at larger values of r. In order to prove this hypothesis, an
experiment was conducted for a two bubble system with a
larger value of r. This was achieved by keeping the reference
bubble at 50 ul and increasing the size of the second bubble
to 150 wl. This system would correspond to r=1.44. Again,
as in the previous case, the bubbles were moved apart to a
maximum distance of 80 mm. The results obtained are
shown in the Fig. 11(b). As in the previous case, for small
values of d, the dominant frequency is the + mode fre-
quency. The — mode becomes dominant when the distance
between the bubble was increased. It is important to note that
the transition of the dominant frequency from the + to the —
mode occurs at bubble separation d=~20 mm. This is a larger
transition value than for the prior set of experiment (when
the transition occurs at d= 14 mm), indicating that the anti-
symmetric mode is harder to excite in this system (i.e., for
r=1.44) than in the previous system (for r=1.26).

Lastly, the effects of smaller bubble size is investigated.
Experiments were conducted with a bubble system consist-
ing of 10 ul and a 20 ul bubbles. This case has r=1.26
[similar to the case in Fig. 11(a)] but d/R, is much larger
(due to the smaller size of the 10 ul reference bubble). The
results obtained are shown in Fig. 12. It is clear that the
dominant frequency obtained is the + mode resonance fre-
quency. No — mode frequencies were detected by the micro-
phone. The + mode resonance is closer to that of the theo-
retically predicted when the distance between the bubbles is
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small. However, as the bubble separation distance increases,
the experimental data deviate from the theoretical values.
The + mode frequency increases gradually and asymptotes,
similar to that predicted by the mathematical model. How-
ever, the experimental results and the theoretical results do
not asymptote to the same value. It is interesting to note that
for all separation distances, the experimentally measured
resonance frequency did not pick up the — mode frequency.

V. CONCLUSION

The present results on bubble attached to a rigid bound-
ary show that bubbles of different sizes exhibit similar trends
in resonant acoustic frequency to bubbles of equal size. It has
been illustrated that as in the case of systems consisting of
bubbles that are of the similar size, the oscillations of a sys-
tem of bubbles of different size attached to a rigid boundary
can be modeled using coupled-oscillator theory with mirror-
image bubbles approximating the effects of the wall. Both
theory and experimental data show that as the ratio of the
volume of the bubbles in the system increases, the resonance
frequency of the system decreases. Results obtained using
the coupled-oscillator model were generally in fair to good
agreement with the experimental data. It was observed that
when the distance between the bubbles is small, the symmet-
ric mode is dominant and when the distance between the
bubbles is large, the antisymmetric mode frequency becomes
dominant. The antisymmetric mode is harder to detect when
the ratio of the bubble sizes in the system is large.
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